PRACT
Predicting Road ACCidents - a Transferable methodology across Europe: Project Results for Practitioners I: Repository

Anastasios Dragomanovits, Research Associate
Alexandra Laiou, Research Associate
George Yannis, Professor

National Technical University of Athens (NTUA)
1. Review of existing APM/CMF Databases and Road Safety Toolkits

2. Development of PRACT Repository

3. Repository Operation and Features

4. Example Queries

5. Conclusions
Web-based CMF databases and Road Safety Toolkits

- FHWA CMF Clearinghouse (http://www.cmfclearinghouse.org),

• Includes only CMFs.
• Currently includes 5,378 CMFs (421 CMFs from HSM and 4,957 CMFs not in the HSM).
• A rating process of CMFs has been applied, however not as demanding as the one of HSM.
• Detailed background information on presented CMFs is available.
67 treatments, all concerning road infrastructure, are included, with an estimated “crash reduction effectiveness”.

Searchable database of treatments according to:
- Treatment type/ name,
- Crash type,
- Safety issue,
- Road user group

Information on the estimation of crash reduction effectiveness is generally not available.
iRAP Road Safety Toolkit

- Includes 58 treatments (infrastructure, vehicle & user related).
- No CMFs or APMs are included.
- Rough assessment of each treatment's effectiveness using a four scale system:
 - 0-10%,
 - 10-25%,
 - 25-40%,
 - 60% or more.
SPF Clearinghouse

- Includes only SPFs
- Data gathered primarily on a voluntarily basis from users
- Detailed background information on included SPFs (sample size, study citation, statistical methodology etc.) available only to subscribers.
Additional Value of PRACT Repository (1/2)

- Stand-alone Regression Equation
 APMs are not available in any of the above web databases.
- SPF are available only in SPF Clearinghouse (to subscribers only), without however providing adequate background information.
- Existing Databases include mostly data from USA and Australia. Results from European studies are very uncommon.

www.pract-repository.eu
In PRACT Repository:

- All types of data required in accident prediction are available:
 - CMFs,
 - SPFss, and
 - Regression Equation APMs.
- The quality of included CMFs has been verified through an evaluation process.
- User is provided with additional information to verify the quality and the transferability of CMFs and APMs.
- Data from European studies are included.

www.pract-repository.eu
• The repository has **two parts**: the CMF part and the APM part.
• Both parts are based on the respective inventories developed within PRACT review process.
• **All reviewed APMs** were included in the repository.
• Only **high quality CMFs** were included in the repository, on the basis of specific criteria.
Criteria for CMF inclusion

• Quality criteria refer to:
 - statistical design,
 - testing for statistical significance, and
 - sample size.

• CMFs originating from the Highway Safety Manual were considered “a priori” of adequate quality and were included in the repository.

• All other CMFs were assessed prior to inclusion in the repository, on the basis of fulfilling all of the quality criteria.
CMF Criterion 1: Statistical Design

- **Naive B-A analysis** (no comparison group): not accepted

- **Simple cross-sectional analysis**: not accepted

- **B-A with comparison group**: accepted, provided that:
 - the comparison group (CG) is comparable to the treated group,
 - CG is properly selected to address most common biases, and
 - there are sufficient controls to deal with time trends in accidents.

- **Empirical Bayes B-A analysis**: accepted, provided that:
 - there are no evident problems in the choice of the reference group.

- **Poisson / Negative Binomial / Quasi - Poisson Regression modelling**: accepted only for treatments with random treatment allocation (e.g. blanket treatments), not accepted for treatments applied to high risk sites.
CMF Criterion 2: Testing for Statistical Significance

- Statistically significant at **10% level** as a minimum.
- **95% interval does not include 1.**
- If 95% interval includes 1 and all other criteria are met, the CMF was included in the repository with the code "not significant" instead of the CMF value, as an indication that the treatment has no significant impact to accidents.
Final Project Workshop - Manchester, 3rd June 2016

CMF Criterion 3: Sample Size (sites and years)

• **B-A analysis studies:** at least 10 treated sites and at least 3 years of data, both for the before and the after period.

• **Multivariate cross-sectional models**
 inclusion criteria depended on the number of explanatory variables (EV) and on whether observations for each year are treated as separate observations in the model e.g.:
 1. If observations for each year are treated as separate observations:
 • For 5 or less EV, the criterion is: sites x years > number of EVs + 50
 • For 6 or more EV, the criterion is: sites x years > number of EVs x 10
 2. If average / mean values of variables over all years are used in the model:
 • For 5 or less EV, the criterion is: sites x years > number of EVs + 50
 • For 6 or more EV, the criterion is: number of sites > number of EVs x 10
Results of Criteria Application

- The quality criteria were applied to the CMFs (1,526 Factors and Functions) gathered during the review process.

- 889 CMFs were found to satisfy the quality criteria and were included in the repository.
Main Features of PRACT Repository

- **Link to website:** www.pract-repository.eu
- **Five basic sections:**
 - **HOME:** basic information about the repository and about PRACT project,
 - **SEARCH FOR APMs:** search the database for APMs with specific characteristics,
 - **SEARCH FOR CMFs:** search the database for CMFs with specific characteristics,
 - **GLOSSARY:** definitions of the most commonly used terms
 - **CONTACT:** allows the user to send email to the partners responsible for the operation and maintenance of the website.
ABOUT PRACT – PREDICTING ROAD ACCIDENTS – A TRANSFERABLE METHODOLOGY ACROSS EUROPE

This Repository contains the most recent Accident Prediction Models and Crash Modification Factors, highlighting effectiveness of road safety measures worldwide, for use by road safety decision makers and practitioners worldwide.

This Repository has been developed within the framework of the project PRACT, (Predicting Road ACCidents-a Transferable methodology across Europe) carried out by the University of Florence, the National Technical University of Athens, the Technical University of Berlin and the Imperial College London, commissioned by the Conference of European Directors of Roads.

The basic assumption on which the PRACT Repository is built is that Accident Prediction Models (APM) and Crash Modification Factors (CMF) can be transferred to conditions different from the ones for which they have been developed, if selected based on scientifically valid criteria and adapted to local conditions based on historical crash data.
GLOSSARY

Accident Prediction Model (APM) or Safety Performance Function (SPF): an equation used to estimate or predict the expected average accident frequency at a location, as a function of traffic volume and road infrastructure characteristics (e.g., number of lanes, type of median, traffic control). In PRACT repository, APMs are divided into two types: Regression Equation Models and SPF & CMFs Models (see also respective definitions in the glossary).

Average Annual Daily Traffic (AADT): the counted (or estimated) total traffic volume in one year divided by 365 days/ year.

Before – After Study: the evaluation of implemented safety measures in terms of crash reduction, by comparing frequency or severity of crashes before and after implementation, that often result in the development of CMFs. There are several different types of before – after studies – see also: Naive Before-After Study, Before-After with Comparison Group Study, Empirical Bayes Before-After Study, and Full Bayes Before-After Study.

Before-After with Comparison Group Study: a type of before-after study, in which a group of untreated sites that are similar in nature to the treated sites is used to control for changes in crash frequency not influenced by the treatment. For the approach to give unbiased estimates, treatment implementation must be random (e.g., a blanket treatment applied to all sites) rather than related to accident rates and reference sites must have similar characteristics to the treatment sites, including accident rates in the before period.

Crash Modification Factor (CMF) or Function, or Accident Modification Factor: the relative change in accident frequency due to a change in one specific condition (when all other conditions and site characteristics remain constant). CMF is the ratio of the expected accident frequency after a modification or measure is implemented to the estimated
“CONTACT” section

Università degli Studi di Firenze (UNIFI)
Francesca La Torre
Professor Eng.
Civil and Environmental Engineering Department
Via S. Marta, 3 - 50139 - Firenze - Italy
tel/fax: +39.055.2758871
francescailtorre@unifi.it

National Technical University of Athens (NTUA)
George Yannis
Professor
Department of Transportation Planning and Engineering
5, Iroon Polytechniou str. GR-15773, Athens, Greece
www.nrso.ntua.gr/geyannis
tel: +30.210.7721326
degannis@central.ntua.gr
• The search page allows the user to search the database for APMs by providing any of the characteristics displayed in the figure to the right.

• If one or more of the above search criteria are left blank (or the blank field is selected at the drop-down list), the criterion is ignored. Thus, a search with all fields blank will return all the 273 entries of the APM database.
The search leads to a **results page** with a list of the APMs in the database that meet the search criteria and their most basic characteristics.

Further clicking on any specific ID number from this list provides the user with all the available data related to this specific APM.

<table>
<thead>
<tr>
<th>ID</th>
<th>Road Elements</th>
<th>Types of APM</th>
<th>Equation</th>
<th>Road Types</th>
<th>Geographic Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-020</td>
<td>Intersection</td>
<td>Regression Equation</td>
<td>$A_f = 9.62 \times 10^{(-11)} \times AADT a \times AADT_c \times 0.5 \times V^2$</td>
<td>Two-lane two-way rural road</td>
<td>Queensland - Australia</td>
</tr>
<tr>
<td>1-019</td>
<td>Intersection</td>
<td>Regression Equation</td>
<td>$A_f = 3.63 \times 10^{(-14)} \times AADT \times L \times (V+\bar{A})^2 \times ((V+\bar{A})^2 / R + 1.5) + 47.4$</td>
<td>Two-lane two-way rural road</td>
<td>Queensland - Australia</td>
</tr>
</tbody>
</table>

Back to Search
APM ID: 1-029

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of APM</td>
<td></td>
</tr>
<tr>
<td>Is applicable to Motorways Segments?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable Motorway Speed Change Lanes?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable to Interchange Ramus?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable to 2-way 2-lane Rural Road Segments?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable to Rural Road Intersections?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For Regression Equation

- APM variable 1: Traffic Volume of Major Road AADT1 (veh/day)
- APM variable 2: Traffic Volume of Minor Road AADT2 (veh/day)
- APM variable 3: Major Road median width MEDW (m)
- APM variable 4: Number of driveways on major road within 250ft. of intersection center (ND)

APM equation:

\[A1 = \exp(-15.466 + AADT1^{1.433} \times AADT2^{0.069} \times \exp(-0.0612 \times MEDW^{0.1}) \times \exp(0.0586 \times ND)) \]

Information of considered road elements

- Geographic Data Origin: USA - California & Michigan
- Road element: Intersection
- Road type: Two-lane two-way rural road
- Sampling Criteria: -
- No. of lanes per direction: -
- Inside Tunnel: -
- Minimum Traffic Volume AADT (veh/day): -
- Maximum Traffic Volume AADT (veh/day): -
- Intersection / Interchange type: 3-leg at-grade intersection
- Traffic control at intersection: Stop signs to minor road

Information of considered accidents

- Period of crash data - start: 1993
- Period of crash data - end: 1995
- Crash severity: All
- Crash types: At intersection
- No of vehicles: -
- Other accident parameters: Not specified
- Road user types: Not specified

Comments

- Study Design: Negative Binomial Regression
- Sample Size - No of sites: -
- Sample Size - No of years: -
- Sample Size - No of crashes: -

Study information

- Year published: Year study published: 1999
- Authors: Vogt, A.
The search page allows the user to search the database for APMs by providing any of the characteristics displayed in the figure to the right.

If one or more of the above search criteria are left blank (or the blank field is selected at the drop-down list), the criterion is ignored. Thus, a search with all fields blank will return all the 889 entries of the CMF database.
“SEARCH FOR CMFs” section (2/3)

- The search leads to a results page with a list of the CMFs in the database that meet the search criteria and their most basic characteristics.

- Further clicking on any specific ID number from this list provides the user with all the available data related to this specific CMF.

<table>
<thead>
<tr>
<th>ID</th>
<th>Types of CMFs</th>
<th>CMF Value/Function</th>
<th>CMF types</th>
<th>Countermeasure Description</th>
<th>Road Types</th>
<th>Geographic Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1139</td>
<td>value</td>
<td>0.660</td>
<td>Intersection - Roundabouts</td>
<td>Conversion of Intersection to Roundabout</td>
<td>Two-lane two-way rural road</td>
<td>Belgium (Flanders)</td>
</tr>
<tr>
<td>1140</td>
<td>value</td>
<td>0.610</td>
<td>Intersection - Roundabouts</td>
<td>Conversion of Intersection to Roundabout</td>
<td>Two-lane two-way rural road</td>
<td>Belgium (Flanders)</td>
</tr>
<tr>
<td>1141</td>
<td>value</td>
<td>0.580</td>
<td>Intersection - Roundabouts</td>
<td>Conversion of Intersection to Roundabout</td>
<td>Two-lane two-way rural road</td>
<td>Belgium (Flanders)</td>
</tr>
</tbody>
</table>
CMF ID: 1170

<table>
<thead>
<tr>
<th>Type of CMF</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMF Value / Function</td>
<td>0.560</td>
</tr>
<tr>
<td>CMF variable 1 (within the study)</td>
<td>-</td>
</tr>
<tr>
<td>CMF variable 2 (within the study)</td>
<td>-</td>
</tr>
<tr>
<td>CMF variable 3 (within the study)</td>
<td>-</td>
</tr>
<tr>
<td>CMF type</td>
<td>Intersection - Traffic control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logistics Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is applicable to Motorways Segments?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable Motorway Speed Change Lanes?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable to Interchange Ramps?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable to Interchange Ramp Terminals?</td>
<td>No</td>
</tr>
<tr>
<td>Is applicable to 2-way 2-lane Rural Road Segments?</td>
<td>Yes</td>
</tr>
<tr>
<td>Is applicable to Rural Road Intersections?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Countermasure Description
Installation of Traffic Signals

CMF development information

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Empirical Bayesian Before-After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard error</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Were results tested for statistical significance?	Yes
Sample size: No of sites	84
Sample size: No of years	10
Sample size: No of crashes	Not specified

Explanatory variables included in the safety performance function (if applicable, e.g., EB before-after)	Not specified
Explanatory variables included in the model (for multi-variate cross-sectional studies)	Not specified
Model form for multivariate cross-sectional models (e.g., Negative Binominal model)	Not specified
Was the potential for crash migration taken into account? If yes, how? (for countermeasures where crash migration could be an issue)	Not specified
Any other sources of potential bias that you identified?	Not specified

Study information

<table>
<thead>
<tr>
<th>Study name</th>
<th>Accident Modification Factors for Traffic Engineering and ITS Improvements, NCHRP Report 617</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2008</td>
</tr>
</tbody>
</table>

Information of considered road elements

<table>
<thead>
<tr>
<th>Geographic Data Origin</th>
<th>USA (states of California & Minnesota)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road network length</td>
<td>Intersection</td>
</tr>
<tr>
<td>Road element</td>
<td>Intersection</td>
</tr>
<tr>
<td>Road type</td>
<td>Two-lane two-way rural road</td>
</tr>
<tr>
<td>Sampling Criteria</td>
<td>Not specified</td>
</tr>
<tr>
<td>Comparison Group Selection Criteria</td>
<td>Not specified</td>
</tr>
<tr>
<td>No. of lanes per direction</td>
<td>Not specified</td>
</tr>
<tr>
<td>Minimum Traffic Volume AADT (veh/day)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Maximum Traffic Volume AADT (veh/day)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ramp terminal type</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Intersection / Interchange type</td>
<td>4-leg at-grade intersection</td>
</tr>
<tr>
<td>Traffic control at intersection</td>
<td>Stop signs or minor read</td>
</tr>
</tbody>
</table>

Information of considered accidents

Period of crash data - start	1992
Period of crash data - end	2001
Crash severity	All
Crash types	At intersection - all
No of vehicles	Not specified
Other accident parameters	Not specified
Road user types	Not specified

Countermeasure information

| Safety deficiency | Inadequate Intersection Traffic Control |
| Countermeasure category | Intersection Traffic Control and Operational Elements |

Comments
The PRACT Repository is a valuable road safety decision support system because:

- it organizes current knowledge on accident prediction (both APMs and CMFs) in a user-friendly and easily accessible by all road safety practitioners website,
- it is a complementary database to the PRACT Tool & Guideline,
- it provides all the available background information on the APM or CMF development, to assist in the assessment of the suitability of the provided data.
PRACT
Predicting Road ACCidents - a Transferable methodology across Europe: Project Results for Practitioners I: Repository

Anastasios Dragomanovits, Research Associate
Alexandra Laiou, Research Associate
George Yannis, Professor

National Technical University of Athens (NTUA)